Āryabhaṭīya-Chapter 04

Site Homepage Book Frontmatter Book Resources

गोलपाद

Āryabhaṭīya/Chapter 04

मेषऽदेस्कन्याअन्तं समं उदचपमण्डल अर्धं अपयातम् ।
तौल्यऽदेस्मीनान्तं शेष अर्धं दक्षिणेन एव ।। ४.१ ।।

One half of the ecliptic, running from the beginning of the sign Aries to the end of the sign Virgo, lies obliquely inclined (to the equator) northwards. The remaining half (of the ecliptic) running from the beginning of the sign Libra to the end of the sign Pisces, lies (equally inclined to the equator) southwards.

Āryabhaṭīya/Chapter 04

ताराग्रहैन्दुपातास् भ्रमन्ति अजस्रं अपमण्डले अर्कस्च ।
अर्कात्च मण्डल अर्धे भ्रमति हि तस्मिन्क्षितिछाया ।। ४.२ ।।

The nodes of the star-planets (Mars, Mercury, Jupiter, Venus and Satarn) and of the Moon incessently move on the ecliptic. So also does the Sun. From the Sun, ata distance of half a circle, moves thereon the Shadow of the Earth.

Āryabhaṭīya/Chapter 04

अपमण्डलस्य चन्द्रस्पातात् याति उत्तरेण दक्षिणतस् ।
कुजगुरुकोणास्च एवं शीघ्रौच्चेन अपि बुधशुक्रौ ।। ४.३ ।।

The Moon moves to the north and to the south of the ecliptic (respectively) from its (ascending and descending) nodes. So also do the planets Mars, Jupiter and Saturn. Similar is also the motion of the sighroccas of Mercury and Venus.

Āryabhaṭīya/Chapter 04

चन्द्रसंशैस् द्वादशभिसविक्षिप्तसर्कान्तरस्थितस्दृश्यस् ।
नवभिस्भृगुस्भृगोस्तैस् द्विअधिकैस् द्विअधिकैस्यथा श्लक्ष्णास् ।। ४.४ ।।

When the Moon has no latitude it is visible when situated at a distance of 12 degrees (of time) from the Sun. Venus is visible when 9 degrees (of time) distant. from the Sun. The other planets taken in the order of decreasing sizes (viz., Jupiter, Mercury, Saturn, and Mars) are visible when they are 9 degrees (of time) increased by two-s (i.e, when they are 11, 13, 15 and 17 degrees of time) distant from the Sun.

Āryabhaṭīya/Chapter 04

भूग्रहभानां गोल अर्धानि स्वछायया विवर्णानि ।
अर्धानि यथासारं सूर्याभिमुखानि दीप्यन्ते ।। ४.५ ।।

Halves of the globes of the Earth, the planets and the stars are dark due to their own shadows; the other halves facing the Sun are bright in proportion to their sizes.

Āryabhaṭīya/Chapter 04

वृत्तभपञ्जरमध्ये कक्ष्यापरिवेष्टितस्खमध्यगतस् ।
मृद्जलशिखिवायुमयस्भूगोलस्सर्वतस्वृत्तस् ।। ४.६ ।।

The globe of the Earth stands (supportless) in space at the centre of the circular frame of the asterisms (i.e., at the centre of the Bhagola) surrounded by the orbits (of the planets); it is made up of water, earth, fire and air and is spherical (lit. circular on all sides).

Āryabhaṭīya/Chapter 04

यद्वत्कदम्बपुष्पग्रन्थिस्प्रचितस्समन्ततस्कुसुमैस् ।
तद्वत्हि सर्वसत्त्वैस्जलजैस्स्थलजैस्च भूगोलस् ।। ४.७ ।।

Just as the bulb of a Kadamba flower is covered all around by blossoms, just so is the globe of the Earth surrounded by all creatures, terrestrial as well as aquatic.

Āryabhaṭīya/Chapter 04

ब्रह्मदिवसेन भूमेसुपरिष्टात्योजनं भवति वृद्धिस् ।
दिनतुल्यया एकरात्र्या मृदुपचिताया भवति हानिस् ।। ४.८ ।।

During a day of Brahma, the size of the Earth increases externally by one yojana; and during a night of Brahma, which is as long as a day, this growth of the earth is destroyed.

Āryabhaṭīya/Chapter 04

अनुलोमगतिस्नौस्थस् पश्यति अचलं विलोमगं यद्वत् ।
अचलानि भानि तद्वत्समपश्चिमगानि लङ्कायाम् ।। ४.९ ।।

Just as a man in a boat moving forward sees the stationary objects (on either side of the river) as moving backward, just so are the stationary stars seen by people at Lanka (on the equator), as moving exactly towards the west.

Āryabhaṭīya/Chapter 04

उदयास्तमयनिमित्तं नित्यं प्रवहेण वायुना क्षिप्तस् ।
लङ्कासमपश्चिमगस्भपञ्जरस्सग्रहस् भ्रमति ।। ४.१० ।।

(It so appears as if) the entire structure of the asterisms together with the planets were moving exactly towards the west of Lanka, being constantly driven by the provector wind, to cause their rising and setting.

Āryabhaṭīya/Chapter 04

मेरुस्योजनमात्रस्प्रभाकरशिमवता परिक्षिप्तस् ।
नन्दनवनस्य मध्ये रत्नमयस्सर्वतस्वृत्तस् ।। ४.११ ।।

The Meru (mountain) is exactly one yojana (in height). It is light-producing, surrounded by the Himayat mountain, situated in the middle of the Nandana forest, made of jewels, and cylindrical in shape.

Āryabhaṭīya/Chapter 04

स्वर्मेरू स्थलमध्ये नरकस्बडवामुखं च जलमध्ये ।
अमरमरास् मन्यन्ते परस्परं अधस्स्थितास्नियतम् ।। ४.१२ ।।

The heaven and the Meru mountain are at the centre of the land (i.e., at the north pole); the hell and the Badavamukha are at the centre of the water (i.e., at the south pole), The gods (residing at the Meru mountain) and the demons (residing at the Badavamukha) consider themselves positively and permanently below each other.

Āryabhaṭīya/Chapter 04

उदयस्यस्लङ्कायां ससस्तमयस्सवितुरेव सिद्धपुरे ।
मध्याह्नस्यमकोट्यां रोमकविषये अर्धरात्रस् स्यात् ।। ४.१३ ।।

When it is sunrise at Lanka, it is sunset at Siddhapura, midday at Yavakoti, and midnight at Romaka.

Āryabhaṭīya/Chapter 04

स्थलजलमध्यात्लङ्का भूकक्ष्यायास् भवेत् चतुर्भागे ।
उज्जयिनी लङ्कायास्तद् चतुरंशे समौत्तरतस् ।। ४.१४ ।।

From the centres of the land and the water, at a distance of one-quarter of the Earth's circumference, lies Lanka; and from Lanka, at a distance of one-fourth thereof, exactly northwards, lies Ujjayini.

Āryabhaṭīya/Chapter 04

भूव्यास अर्धेन ऊनं दृश्यं देशात्समात्भगोल अर्धम् ।
अर्धं भूमिछन्नं भूव्यास अर्धाधिकं च एव ।। ४.१५ ।।

One half of the Bhagola as diminished by the Earth's semi-diameter is visible from a level place (free from any obstructions). The other one-half as increased by the Earth's semi-diameter remains hidden by the Earth

Āryabhaṭīya/Chapter 04

देवास् पश्यन्ति भगोल अर्धं उदच्मेरुसंस्थितास्सव्यम् ।
अर्धं तु अपसव्यगतं दक्षिणबडवामुखे प्रेतास् ।। ४.१६ ।।

The gods living in the north at the Meru mountain (i.e., at the north pole) see one half of the Bhagola as revolving from left to right (or clockwise); the demons living in the south at the Badavamukha (i.e., at the south pole), on the other hand, see the other half as revolving from right to left (or anti-clokwise).

Āryabhaṭīya/Chapter 04

रविवर्ष अर्धं देवास् पश्यन्ति उदितं रविं तथा प्रेतास् ।
शशिमास अर्धं पितरस्शशिगास्कुदिन अर्धं इह मनुजास् ।। ४.१७ ।।

The gods see the Sun, after it has risen, for half a solar year; so is done by the demons too. The manes living on (the other side of) the Moon see the Sun for half a lunar month; the men here see it for half a civil day.

Āryabhaṭīya/Chapter 04

पूर्वापरं अधसूर्ध्वं मण्डलं अथ दक्षिणौत्तरं च एव ।
क्षितिजं समपार्श्वस्थं भानां यत्र उदयास्तमयौ ।। ४.१८ ।।

The vertical circle which passes through the east and west points is the prime vertical, and the vertical circle passing through the north and south points is the meridian. The circle which goes by the side of the above circles (like a girdle) and on which the stars rise and set is the horizon.

Āryabhaṭīya/Chapter 04

पूर्वापरदिश्लग्नं क्षितिजातक्षाग्रयोस्च लग्नं यत् ।
उन्मण्डलं भवेत्तत्क्षयवृद्धी यत्र दिवसनिशोस् ।। ४.१९ ।।

The circle which passes through the east and west points and meets (the meridian above the north point and below the south point) at distances equal to the latitude (of the place) from the horizon is the equatorial horizon (or six o' clock circle) on which the decrease and increase of the day and night are measured.

Āryabhaṭīya/Chapter 04

पूर्वापरदिश्रेखा अधस्च ऊर्ध्वा दक्षिणौत्तरस्था च ।
एतासां सम्पातस्द्रष्टा यस्मिन् भवेत्देशे ।। ४.२० ।।

The east-west line, the nadir-zenith line, and the north-south line intersect where the observer is.

Āryabhaṭīya/Chapter 04

ऊर्ध्वं अधस्तात्द्रष्टुर्ज्ञेयं दृश्मण्डलं ग्रहाभिमुखम् ।
दृश्क्षेपमण्डलं अपि प्राच्लग्नं स्यात् त्रिराशिऊनम् ।। ४.२१ ।।

The great circle which is vertical in relation to the observer and passes through the planet is the drnmandala (i. e., the vertical circle through the planet). The vertical circle which passes through that point of the ecliptic which is three signs behind the rising point of the ecliptic is the drkksepavrtta.

Āryabhaṭīya/Chapter 04

काष्ठमयं समवृत्तं समन्ततस्समगुरुं लघुं गोलम् ।
पारततैलजलैस्तं भ्रमयेत्स्वधिया च कालसमम् ।। ४.२२ ।।

The Sphere (Gola-yantra) which is made of wood, perfectly spherical, uniformly dense all round but light (in weight) should be made to rotate keeping pace with time with the help of mercury, oil and water by the application of one's own intellect.

Āryabhaṭīya/Chapter 04

दृश्गोल अर्धकपाले ज्या अर्धेन विकल्पयेत्भगोल अर्धम् ।
विषुवत्जीवाअक्षभुजा तस्यास्तु अवलम्बक्स्कोटिस् ।। ४.२३ ।।

Divide half of the Bhagola lying in the visible half of the Khagola by means of Rsines (so as to form latitude-triangles). The Rsine of the latitude is the base of a latitude-triangle. The Rsine of the co-latitude is the upright of the same (triangle).

Āryabhaṭīya/Chapter 04

इष्टापक्रमवर्गं व्यास अर्धकृतेस् विशोध्य यत्मूलम् ।
विषुवतुदच्दक्षिणतस्ततहोरात्र अर्धविष्कम्भस् ।। ४.२४ ।।

Subtract the square of the Rsine of the given declination from the square of the radius, and take the square root of the difference. The result is the radius of the day circle, whether the heavenly body is towards the north or towards the south of the equator.

Āryabhaṭīya/Chapter 04

इष्टज्यागुणितं अहोरात्रव्यास अर्धं एव काष्ठान्त्यम् ।
स्वाहोरात्र अर्धहृतं फलं अजात्लङ्काउदयप्राच्ज्यास् ।। ४.२५ ।।

Multiply the day radius corresponding to the greatest declination (on the ecliptic) by the desired Rsine (of one, two or three signs) and divide by the corresponding day radius: the result is the Rsine of the right ascension (of one, two or three signs), measured from the first point of Aries along the equator.

Āryabhaṭīya/Chapter 04

इष्टापक्रमगुणितां अक्षज्यां लम्बकेन हृत्वा या ।
स्वाहोरात्रे क्षितिजा क्षयवृद्धिज्या दिननिशोस्सा ।। ४.२६ ।।

The Rsine of latitude multiplied by the Rsine of the given declination and divided by the Rsine of colatitude gives the earthsine, lying in the plane of the day circle. This is also equal to the Rsine of half the excess or defect of the day or night (in the plane of the day circle).

Āryabhaṭīya/Chapter 04

उदयति हि चक्रपादस्चरदलहीनेन दिवसपादेन ।
प्रथमसन्त्यस्च अथ अन्यौ तद्सहितेन क्रमौत्क्रमशस् ।। ४.२७ ।।

The first as well as the last quadrant of the ecliptic rises (above the local horizon) in one quarter of a sidereal day diminished by (the ghatis of) the ascensional difference. The other two (viz. the second and third quadrants) rise in one quarter of a sidereal day as increased by the same (i.e. the ghafis of the ascensiona] difference). The times of rising of the individual signs (Aries, Taurus and Gemini) in the first quadrant are obtained by subtracting their ascensional differences from their right ascensions in the serial order; in the second quadrant by adding the ascensional differences of the same signs to the corresponding right ascensions in the reverse order. The times of risings of the six signs in the first and second quadrants (Aries, etc.) taken in the reverse order give the risings of the six signs in the third and fourth quadrants (Libra, etc.).

Āryabhaṭīya/Chapter 04

स्वाहोरात्रैष्टज्या क्षितिजातवलम्बकऽहतां कृत्वा ।
विष्कम्भ अर्धविभक्ते दिनस्य गतशेष्सयोस्शङ्कुस् ।। ४.२८ ।।

Find the Rsine of the arc of the day circle from the horizon (up to the point occupied by the heavenly body) at the given time; multiply that by the Rsine of the colafitude and divide by the radius; the result is the Rsine of the altitude (of the heavenly body) at the given time elapsed since sunrise in the forenoon or to elapse before sunset in the afternoon.

Āryabhaṭīya/Chapter 04

विषुवत्जीवागुणितस्स्वैष्टस्शङ्कुस्स्वलम्बकेन हृतस् ।
अस्तमयौदयसूत्रात्दक्षिणतस्सूर्यशङ्कुअग्रम् ।। ४.२९ ।।

Multiply the Rsine of the Sun's altitude for the given time by the Rsine of latitude and divide by the Rsine of colatitude: the result is the Sun's sankvagra, which is always to the south of the Sun's rising setting line.

Āryabhaṭīya/Chapter 04

परमापक्रमजीवां इष्टज्या अर्धऽहतां ततस् विभजेत् ।
ज्या लम्बकेन लब्धा अर्काग्रा पूर्वापरे क्षितिजे ।। ४.३० ।।

Multiply the Rsine of the (Sun's tropical) longitude for the given time by the Rsine of the Sun's greatest declination and then divide by the Rsine of colatitude: the resulting Rsine is the Sun's agra on the eastern or western horizon.

Āryabhaṭīya/Chapter 04

सा विषुवत्ज्याऊना चेद्विषुवतुदच्लम्बकेन सङ्गुणिता ।
विषुवत्ज्यया विभक्ता लब्धस्पूर्वापरे शङ्कुस् ।। ४.३१ ।।

When that (agra) is less than the Rsine of the latitude and the Sun is in the northern hemisphere, multiply that (Sun's agra) by the Rsine of colatitude and divide by the Rsine of latitude; the result is the Rsine of the Sun's altitude when the Sun is on the prime vertical.

Āryabhaṭīya/Chapter 04

क्षितिजातुन्नतभागानां या ज्या सा परस् भवेत्शङ्कुस् ।
मध्यात्नतभागज्या छाया शङ्कोस्तु तस्य एव ।। ४.३२ ।।

The Rsine of the degrees of the (Sun's) altitude above the horizon (at midday when the Sun is on the meridian) is the greatest gnomon (on that day). The Rsine of the (Sun's) zenith distance (at that time) is the shadow of the same gnomon.

Āryabhaṭīya/Chapter 04

मध्यज्याउदयजीवासंवर्गे व्यासदलहृते यत् स्यात् ।
तद्मध्यज्याकृत्योस्विशेषमूलं स्वदृश्क्षेपस् । ४.३३ ।।

Divide the product of the madhyajya and the udayajya by the radius. The square root of the difference between the squares of that (result) and the madhyajya is the (Sun's or Moon's) own drkksepa

Āryabhaṭīya/Chapter 04

दृश्दृश्क्षेपकृतिविशेषितस्य मूलं स्वदृश्गतिस्कुवशात् ।
क्षितिजे स्वा दृश्छाया भूव्यास अर्धं नभस्मध्यात् ।। ४.३४ ।।

The square root of the difference between the squares of (i) the Rsine of the zenith distance (of the Sun or Moon) and (ii) the drkksepajya, is the (Sun's or Moon's) own drggatijya. On account of (the sphericity of) the Earth, parallex increases from zero at the zenith to the maximum value equal to the Earth's semi-diameter (as measured in the spheres of the Sun and the Moon) at the horizon.

Āryabhaṭīya/Chapter 04

विक्षेपगुणाक्षज्या लम्बकभक्ता भवेतृणं उदच्स्थे ।
उदये धनं अस्तमये दक्षिणगे धनं ऋणं चन्द्रे ।। ४.३५ ।।

Multiply the Rsine ef the latitude of the local place by the Moon's latitude and divide (the resulting product) by the Rsine of the colatitade : (the result is the aksadrkkarma) for the Moon). When the Moon is to the north (of the ecliptic), it should be subtracted from the Moon's longitude in the case of the rising of the Moon and added to the Moon's longitude in the case of the setting of the Moon; when the Moon is to the south (of the ecliptic), it should be added to the Moon's longitude (in the case of the rising of the Moon) and subtracted from the Moon's longitude (in the the case of the setting of the Moon).

Āryabhaṭīya/Chapter 04

विक्षेपापक्रमगुणं उत्क्रमणं विस्तर अर्धकृतिभक्तम् ।
उदचृणधनं उदचयने दक्षिणगे धनं ऋणं याम्ये ।। ४.३६ ।।

Multiply the Rversed sine of the Moon's (tropical) longitude (as increased by three signs) by the Moon's latitude and also by the (Rsine of the Sun's) greatest declination and divide (the resulting product) by the square of the radius. When the Moon's latitude fs north, it should be subtracted from or added to the Moon's longitude, according as the Moon's ayana is north or south (i.e., according as the Moon isin the six signs beginning with the tropical sign Capricorn or in those beginning with the tropical sign Cancer); when the Moon's latitude is south, it should be added or subtracted, (respectively).

Āryabhaṭīya/Chapter 04

चन्द्रस्जलं अर्कसग्निस्मृद्भूछाया अपि या तमस्तत्हि ।
छादयति शशी सूर्यं शशिनं महती च भूछाया ।। ४.३७ ।।

The Moon is water, the Sun is fire, the Earth is earth, and what is called Shadow is darkness (caused by the Earth's Shadow). The Moon eclipses the Sun and the great Shadow of the Earth eclipses the Moon.

Āryabhaṭīya/Chapter 04

स्फुटशशिमासान्ते अर्कं पातऽसन्नस्यदा प्रविशति इन्दुस् ।
भूछायां पक्षान्ते तदा अधिकऊनं ग्रहणमध्यम् ।। ४.३८ ।।

When at the end of a lunar month, the Moon, lying near a node (of the Moon), enters the Sun, or, at the end of a lunar fortnight, enters the Earth's Shadow, it is more or less the middle of an eclipse, (solar eclipse in the former case and lunar eclipse in the latter case).

Āryabhaṭīya/Chapter 04

भूरविविवरं विभजेत्भूगुणितं तु रविभूविशेषेण ।
भूछायादीर्घत्वं लब्धं भूगोलविष्कम्भात् ।। ४.३९ ।।

Multiply the distance of the Sun from the Earth by the diameter of the Earth and divide (the product) by the difference between the diameters of the Sun and the Earth: the result is the length of the Shadow of the Earth (i.e. the distance of the vertex of the Earth's shadow) from the diameter of the Earth (i.e. from the centre of the Earth).

Āryabhaṭīya/Chapter 04

छायाअग्रचन्द्रविवरं भूविष्कम्भेण तत्समभ्यस्तम् ।
भूछायया विभक्तं विद्यात्तमसस्स्वविष्कम्भम् ।। ४.४० ।।

Multiply the difference between the length of the Earth's shadow and the distance of the Moon by the Earth's diameter and divide (the product) by the length of the Earth's shadow; the result is the diameter of the Tamas (i.e., the diameter of the Earth's shadow at the Moon's distance).

Āryabhaṭīya/Chapter 04

तद्शशिसम्पर्क अर्धकृतेस्शशिविक्षेपवर्गितं शोध्यम् ।
स्थिति अर्धं अस्य मूलं ज्ञेयं चन्द्रार्कदिनभोगात् ।। ४.४१ ।।

From the square of half the sum of the diameters of that (Tamas) and the Moon, subtract the square of the Moon's latitude, and (then) take the square root of the difference; the result is known as half the duration of the eclipse (in terms of minutes of arc). The corresponding time (in ghatis etc.) is obtained with the help of the daily motions of the Sun and the Moon.

Āryabhaṭīya/Chapter 04

चन्द्रव्यास अर्धऊनस्य वर्गितं यत्तमस्मय अर्धस्य ।
विक्षेपकृतिविहीनं तस्मात्मूलं विमर्द अर्धम् ।। ४.४२ ।।

Subtract the semi-diameter of the Moon from the semi-diameter of that Tamas and find the square of that difference. Diminish that by the square of the (Moon's) latitude and then take the square root of that ; the square root (thus obtained) is half the duration of totality of the eclipse.

Āryabhaṭīya/Chapter 04

तमसस्विष्कम्भ अर्धं शशिविष्कम्भ अर्धवर्जितं अपोह्य ।
विक्षेपात्यत्शेषं न गृह्यते तत्शशाङ्कस्य ।। ४.४३ ।।

Subtract the Moon's semi-diameter from the semi-diameter of the Tamas; then subtract whatever is obtained from the Moon's latitude : the result is the part of the Moon not eclipsed (by the Tamas).

Āryabhaṭīya/Chapter 04

विक्षेपवर्गसहितात्स्थितिमध्यातिष्टवर्जितात्मूलम् ।
सम्पर्क अर्धात्शोध्यं शेषस्तात्कालिकस्ग्रासस् ।। ४.४४ ।।

Subtract the ista from the semi-duration of the eclipse; to (the square of) that (difference) add the square of the Moon's latitude (at the given time); and take the square root of this sum. Subtract that (square root) from the sum of the semi-diameters of the Tamas and the Moon; the remainder (thus obtained) is the measure of the eclipse at the given time.

Āryabhaṭīya/Chapter 04

मध्याह्नौत्क्रमगुणितसक्षस्दक्षिणतस् अर्धविस्तरहृतस्दिक् ।
स्थिति अर्धात्च अर्कैन्द्वोस् त्रिराशिसहितायनात्स्पर्शे ।। ४.४५ ।।

(a-b) Multiply the Rversed sine of the hour angle (east or west) by (the Rsine of) the latitude, and divide by the radius : the result is the aksavalana. Its direction (towards the east of the body in the afternoon and towards the west of the body in the forenoon) is south. (In the contrary case, it is north). (c-d) Making use of the semi-duration of the eclipse, calculate the longitude of the Sun or Moon (whichever is eclipsed) for the time of the first contact. Increase that longitude by three sign and (multiplying the Rversed sine thereof by the Rsine of the Sun's greatest declination and dividing by the radius) calculate the Rsine of the corresponding declination : this is the ayanavalana (or krantiyalana) for the time of the first contact. (Its direction in the eastern side of the eclipsed body is the same as that of the ayana of the eclipsed body; in the western side it is contrary to that).

Āryabhaṭīya/Chapter 04

प्रग्रहणान्ते धूम्रस्खण्डग्रहणे शशी भवति कृष्णस् ।
सर्वग्रासे कपिलस्सकृष्णताम्रस्तमस्मध्ये ।। ४.४६ ।।

At the beginning and end of its eclipse, the Moon (i.e., the obscured part of the Moon) is smoky; when half obscured, it is black; when (just) totally obscured, (i e., at immersion or emersion), it is tawny; when far inside the Shadow, it is copper-coloured with blackish tinge.

Āryabhaṭīya/Chapter 04

सूर्यैन्दुपरिधियोगे अर्क अष्टमभागस् भवति अनादेश्यस् ।
भानोस्भास्वरभावात्सुअच्छतनुत्वात्च शशिपरिधेस् ।। ४.४७ ।।

When the discs of the Sun and the Moon come into contact, a solar eclipse should not be predicted when it amounts to one-eighth of the Sun's diameter (or less) (as it may not be visible to the naked eye) on account of the brilliancy of the Sun and the transparency of the Moon.

Āryabhaṭīya/Chapter 04

क्षितिरवियोगात्दिनकृत्रविइन्दुयोगात् प्रसाधयेत्च इन्दुम् ।
शशिताराग्रहयोगात्तथा एव ताराग्रहास्सर्वे ।। ४.४८ ।।

The Sun has been determined from the conjuction of the Earth and the Sua, the Moon from the conjunction of the Sun and the Moon, and all the other planets from the conjunctions of the planets and the Moon.

Āryabhaṭīya/Chapter 04

सतसत्ज्ञानसमुद्रात्समुद्धृतं ब्रह्मणस्प्रसादेन ।
सत्ज्ञानौत्तमरत्नं मया निमग्नं स्वमतिनावा ।। ४.४९ ।।

By the grace of Brahma, the precious jewel of excellent knowledge (of astronomy) has been brought out by me by means of the boat of my intellect from the sea of true and false knowledge by diving deep into it.

Āryabhaṭīya/Chapter 04

आर्यभटीयं नाम्ना पूर्वं स्वायम्भुअवं सदा नित्यम् ।
सुकृतऽयुषोस्प्रणाशं कुरुते प्रतिकञ्चुकं यसस्य ।। ४.५० ।।

This work, Aryabhatiya by name, is the same as the ancient Svayambhuva (which was revealed by Syayambhi) and as such it is true for all times. One who imitates it or finds fault with it shall lose his good deeds and longevity.